Problem 1.8

Vector proof of a trigonometric identity
Let $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$ be unit vectors in the $x-y$ plane making angles θ and ϕ with the x axis, respectively. Show that $\hat{\mathbf{a}}=\cos \theta \hat{\mathbf{i}}+\sin \theta \hat{\mathbf{j}}, \hat{\mathbf{b}}=\cos \phi \hat{\mathbf{i}}+\sin \phi \hat{\mathbf{j}}$, and using vector algebra prove that

$$
\cos (\theta-\phi)=\cos \theta \cos \phi+\sin \theta \sin \phi
$$

Solution

Figure 1: This figure shows the two unit vectors, $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$, and their components in the x and y directions.

The cosine is ratio of the adjacent side to the hypotenuse, so we have

$$
\cos \theta=\frac{a_{x}}{|\hat{\mathbf{a}}|}=\frac{a_{x}}{1}=a_{x}
$$

and

$$
\cos \phi=\frac{b_{x}}{|\hat{\mathbf{b}}|}=\frac{b_{x}}{1}=b_{x} .
$$

On the other hand, sine is the ratio of the opposite side to the hypotenuse, so we have

$$
\sin \theta=\frac{a_{y}}{|\hat{\mathbf{a}}|}=\frac{a_{y}}{1}=a_{y}
$$

and

$$
\sin \phi=\frac{b_{y}}{|\hat{\mathbf{b}}|}=\frac{b_{y}}{1}=b_{y} .
$$

The unit vectors are defined as

$$
\hat{\mathbf{a}}=\left\langle a_{x}, a_{y}\right\rangle
$$

and

$$
\hat{\mathbf{b}}=\left\langle b_{x}, b_{y}\right\rangle .
$$

Substituting the results above gives us

$$
\hat{\mathbf{a}}=\langle\cos \theta, \sin \theta\rangle=\cos \theta \hat{\mathbf{i}}+\sin \theta \hat{\mathbf{j}}
$$

and

$$
\hat{\mathbf{b}}=\langle\cos \phi, \sin \phi\rangle=\cos \phi \hat{\mathbf{i}}+\sin \phi \hat{\mathbf{j}} .
$$

Figure 2: This figure shows the two unit vectors, $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$, and the angle between them.
The dot product can be calculated in two ways: (1) multiply the magnitudes of the vectors together with the cosine of the angle between them and (2) multiply the respective components of the vectors and add them all up. Thus,

$$
|\hat{\mathbf{a}}||\hat{\mathbf{b}}| \cos (\phi-\theta)=a_{x} b_{x}+a_{y} b_{y}
$$

The magnitudes of the unit vectors are unity, so on the left side we're left with $\cos (\phi-\theta)$. On the right side we plug in the results calculated in the beginning.

$$
\cos (\phi-\theta)=\cos \theta \cos \phi+\sin \theta \sin \phi
$$

Because cosine is an even function, that is

$$
\cos (x)=\cos (-x),
$$

we can write the left side as $\cos (\theta-\phi)$. Therefore,

$$
\cos (\theta-\phi)=\cos \theta \cos \phi+\sin \theta \sin \phi
$$

